THE CENTRAL 300 pc OF THE GALAXY PROBED BY INFRARED SPECTRA OF H₃⁺ AND CO

TAKESHI OKA, Department of Astronomy and Astrophysics, Chemistry, The University of Chicago, Chicago, IL, USA; THOMAS R. GEBALLE, Gemini Observatory/NSF's NOIRLAB, Hilo, HI, USA.

Our 15 years' observations of the infrared spectra of H_3^+ and CO toward 30 young and bright stars with smooth continuum and their analyses have led to the following conclusions.

I. Predominance of Warm and Diffuse Gas and High H₂ Ionization Rate^{*a*}: The CMZ is filled with warm (T ~ 200 K) and diffuse (n ~ 50 cm⁻³) hydrogen gas with a volume-filling factor f ~ 2/3 and atomic and molecular hydrogen number densities are comparable. The cosmic ray H₂ ionization rate, $\zeta \sim 2 \times 10^{-14} \text{ s}^{-1}$, is 1000 times higher than in the solar vicinity suggesting stray magnetic field of ~ 100 μ G in the CMZ if equipartition between cosmic rays and magnetic field is assumed. The X-ray-emitting ultra-hot (10⁸ K) plasma, which some thought to dominate the CMZ, does not exist.

II. Expansion and Morphology of the Warm Diffuse Gas^b: The wide velocity profiles of H_3^+ lines have allowed us to draw longitude-velocity diagrams toward 18 stars. They indicated that the diffuse molecular gas is expanding with a front speed of ~ 150 km s⁻¹. This revives the Expanding Molecular Ring proposed by Kaifu et al. and Scoville in 1972 but there are three differences: (1) the expanding gas is diffuse, (2) the expansion is radial, and (3) the gas fills the CMZ. This revives the circular geometry of the CMZ, as viewed face-on. The elliptic structure with high eccentricity is negated.

III. Locations of Sgr B2 and Star Iota^c: The radial motion of the diffuse gas allows us to determine radial location of a star from velocity profiles of H_3^+ or other molecules. Star ι , which has a strong H_3^+ absorption spectrum and is at galactic longitude 0°.5476, is close to Sgr B2 (at 0°.6667). Using velocity profiles of H_3^+ lines toward Star ι and of H_2O^+ , OH⁺, and ¹³CH⁺ spectra toward Sgr B2 observed by HIFI on the Herschel Space Observatory, we find that both Star ι and Sgr B2 are ~ 90 pc behind the GC's central black hole, Sgr A*. This contradicts the previous conclusion based on trigonometric parallax, which placed Sgr B2 130 ± 60 pc in front of Sgr A*, as well as most models of the CMZ.

^aOka, T., Geballe, T.R., Goto, M., Usuda, T., McCall, B.J., Indriolo, N. 2019, ApJ. 883, 54 (31pp)

^bOka, T., Geballe, T.R. 2020, ApJ. 902, 9 (17pp)

^cOka, T., Geballe, T.R. 2022, ApJ. 927, 97 (8pp)