OBSERVATION OF THE OH- C_6H_6 RADICAL COMPLEX IN AN ARGON MATRIX USING MATRIX ISOLATION INFRARED SPECTROSCOPY WITH A VACUUM ULTRAVIOLET PHOTOLYSIS SOURCE

<u>JAY C. AMICANGELO</u>, CATHERINE KAISER, TRACY JONES, DYLAN JOHNSON, *School of Science* (*Chemistry*), *Penn State Erie, Erie, PA, USA*.

Utilizing matrix isolation infrared spectroscopy with a vacuum ultraviolet (VUV) photolysis source (121 nm), a 1:1 complex of the hydroxyl radical (OH) with benzene (C_6H_6) was observed in low temperature argon matrices. Codeposition experiments with simultaneous VUV photolysis of H_2O and C_6H_6 mixtures were conducted in an argon matrix at 15 K. The OH stretching peak for the OH- C_6H_6 complex was observed at 3502.3 cm⁻¹. Identification of the observed peak of the OH- C_6H_6 complex was established by performing experiments with varying concentrations of the H_2O and C_6H_6 relative to the argon matrix, comparing the co-deposition spectra to the individual monomer spectra of H_2O and C_6H_6 in argon matrices both with and without VUV photolysis, as well as matrix annealing experiments (30 - 35 K). Experiments were also performed using the D_2O isotopomer and the OD stretching peak for the OD- C_6H_6 complex was observed at 2584.1 cm⁻¹. Quantum chemical calculations were performed at the MP2, M06-2X, and ω B97X-D levels of theory with the aug-cc-pVDZ basis set to obtain the optimized geometry and simulated infrared spectrum for the OH- C_6H_6 complex. The observed OH and OD stretching peaks of the OH(D)- C_6H_6 radical complexes observed in argon matrices in the current experiments are in good agreement with the values previously reported in argon matrices using a different production method.^{*a,b*}

^aA. Mardyukov, E. Sanchez-Garcia, R. Crespo-Otero, and W. Sander, Angew. Chem. Int. Ed. <u>48</u>, 4804 (2009)

^bA. Mardyukov, R. Crespo-Otero, E. Sanchez-Garcia, and W. Sander, Chem. Eur. J. 16, 8679 (2010)