HIGH-RESOLUTION, JET-COOLED INFRARED SPECTROSCOPY OF *TRANS*-FORMIC ACID: ANALYSIS OF ν_1 OH STRETCHING FUNDAMENTAL

<u>YA-CHU CHAN</u>, JILA and the Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA; DAVID NESBITT, JILA, Department of Chemistry, and Department of Physics, University of Colorado Boulder, Boulder, CO, USA.

High-resolution infrared reduced-Doppler absorption spectra of jet-cooled gas phase *trans*-formic acid at $T_{rot} \approx 10.9(5)$ K are reported for the first time in the ν_1 OH stretching fundamental region, obtained by supersonically expanding *trans*-formic acid/Ar mixtures through a slit jet nozzle source. Four rovibrational bands are observed, with origins at 3570.493(5) (*a/b*-type), 3566.793(5) (*a/b*-type), 3560.032(9) (*b*-type), and 3534.6869(2) (*a*-type) cm⁻¹, respectively. Based on previous Raman jet spectroscopic work by Nejad and Sibert^{*a*}, these four bands have been assigned to ν_1 , $\nu_2 + \nu_7$, $\nu_6 + 2\nu_7 + 2\nu_9$ (tentatively by our work), and $2\nu_3$, respectively. Specifically, two of the three upper dark states 2^{171} (*a'*) and 6^{17292} (*a'*) are close enough to the "bright" 1^1 (*a'*) state to facilitate strong anharmonic resonance interactions, resulting in intensity mixing into the two zero-order bands that would otherwise be "dark". Furthermore, our high-resolution spectral analysis reveals that there are local rotational crossings between zero-order 1^1 and 2^{171} states. This motivates the development of a 3 coupled state (1^1 , 2^{171} , and 6^{1729^2}) picture to aid in the spectral analysis, which is able to match all 3 observed band origins and relative band intensities, as well as indicate the necessity of multistate coupling. Though limited by the range of *J* and K_a levels ($J' \leq 9$ and $K'_a \leq 3$) populated at supersonic jet temperatures, this work offers the first precision spectroscopic analysis of *trans*-formic acid in the ν_1 OH stretching region, which should aid in the assignment of the more complete yet highly congested room temperature FTIR spectra^{*b*}.

^{*a*}A. Nejad, E.L. Sibert III, The Raman jet spectrum of trans-formic acid and its deuterated isotopologs: Combining theory and experiment to extend the vibrational database, J. Chem. Phys. 154(6) (2021) 064301.

^bD. Hurtmans, F. Herregodts, M. Herman, J. Liévin, A. Campargue, A. Garnache, A. Kachanov, Spectroscopic and ab initio investigation of the ν_{OH} overtone excitation in trans-formic acid, J. Chem. Phys. 113(4) (2000) 1535.