PROBING DIPOLE-BOUND STATES USING HIGH-RESOLUTION RESONANT PHOTOELECTRON IMAGING OF CRYOGENICALLY-COOLED ANIONS

LAI-SHENG WANG, Department of Chemistry, Brown University, Providence, RI, USA.

Negative ions do not possess Rydberg states, but polar anions may have diffuse dipole-bound states just below the detachment threshold, analogous to Rydberg states of neutral molecules. Excitation to vibrational levels of the dipolebound state can induce autodetachment via vibronic coupling. The resulting resonant photoelectron spectrum is highly non-Franck-Condon and yields much richer vibrational information than conventional photoelectron spectroscopy. We developed an experimental apparatus integrating an electrospray ionization source with photoelectron spectroscopy [1], which allowed negative ions from solution samples to be studied in the gas phase. Subsequent development of a cryogenicallycooled Paul trap to create cold anions from electrospray [2] has allowed high-resolution photoelectron imaging to be conducted for complex molecular anions [3], opening opportunities to probe dipole-bound excited states using photodetachment spectroscopy and resonant photoelectron imaging [4]. I will present recent advances in our investigation of dipole-bound excited states, including the observation of pi-type dipole-bound states [5], electron correlation induced by the electric field of the diffuse dipole-bound electron [6], the observation of polarization-assisted dipole-bound states.

References: [1] L. S. Wang, C. F. Ding, X. B. Wang, and S. E. Barlow, Rev. Sci. Instrum. 70, 1957-1966 (1999). [2] X. B. Wang and L. S. Wang, Rev. Sci. Instrum. 79, 073108 (2008). [3] L. S. Wang, J. Chem. Phys. 143, 040901 (2015). [4] G. Z. Zhu and L. S. Wang, Chem. Sci. 10, 9409-9423 (2019). [5] D. F. Yuan, Y. Liu, C. H. Qian, Y. R. Zhang, B. M. Rubenstein, and L. S. Wang, Phys. Rev. Lett. 125, 073003 (2020). [6] D. F. Yuan, Y. Liu, C. H. Qian, G. S. Kocheril, Y. R. Zhang, B. M. Rubenstein, and L. S. Wang, J. Phys. Chem. Lett. 11, 7914-7919 (2020).

