SPECTRAL STUDIES OF THE REACTION OF THE CRIEGEE INTERMEDIATE CH₃CHOO WITH HCL USING A STEP-SCAN FOURIER-TRANSFORM INFRARED ABSORPTION SPECTROMETER

<u>YUAN-PERN LEE</u>, Department of Applied Chemistry, Institute of Molecular Science, and Centre for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; ZIH-SYUAN SU, Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

Reactions between Criegee intermediates and hydrogen halides are important in atmospheric chemistry, because of their large rate coefficients. Employing a Fourier-transform absorption spectrometer in a step-scan mode or a continuous-scan mode, we recorded infrared spectra of transient species and end products in a flowing mixture of CH₃CHI₂/HCl/N₂/O₂ irradiated at 308 nm. Eight bands near 1383.7, 1357.9, 1323.8, 1271.8, 1146.2, 1098.2, 1017.5 and 931.5 cm⁻¹ were experimentally observed and assigned to bands ν_8 to ν_{15} of the *anti*-conformer of chloroethyl hydroperoxide (CEHP, CH₃CHClOOH), according to comparison of vibrational wavenumbers and IR intensities predicted with the B3LYP/aug-cc-pVTZ method. We derived a rate coefficient of *anti*-CH₃CHOO + HCl to be $k_{HCl} = (3.1 \pm 0.2) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ from the formation of *anti*-CEHP. At a later reaction period, absorption bands of H₂O and acetyl chloride, CH₃C(O)Cl, at 1819.1 cm⁻¹ were observed; these species were produced from the decomposition of *anti*-CEHP or the secondary reactions of CH₃CHClO + O₂ \rightarrow CH₃C(O)Cl + HO₂ and OH + HCl \rightarrow H₂O + Cl according to temporal profiles of CEHP, H₂O, and CH₃C(O)Cl; both O₂ and HCl are major species in the system to participate in the secondary reactions. By adding methanol to deplete *anti*-CH₃CHOO, we observed only *anti*-CEHP, indicating that the interconversion from *syn*-CEHP to *anti*-CEHP is rapid. The branching ratio of the formation of CH₃C(O)Cl + H₂O to that of CH₃CHClO + OH was estimated to be 0.5 : 0.5. This observation serves as an excellent example that secondary reactions might interfere with the observation of the original products.