THE PRECISE EQUILIBRIUM STRUCTURE DETERMINATION OF CHLOROBENZENE (C_6H_5Cl) BY MI-CROWAVE AND MILLIMETER-WAVE ROTATIONAL SPECTROSCOPY

NATALIE A. SCHULER, Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA; NITAI PRASAD SAHOO, Department of Chemistry, University of Florida, Gainesville, FL, USA; MARIA ZDANOVSKAIA, P. MATISHA DORMAN, Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA; BRYAN CHANGALA, MICHAEL C McCARTHY, Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA; JOHN F. STANTON, Quantum Theory Project, University of Florida, Gainesville, FL, USA; BRIAN J. ESSELMAN, R. CLAUDE WOODS, ROBERT J. McMAHON, Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA:

The rotational spectra of many isotopologues of chlorobenzene (C₆H₅Cl) have been collected over portions of the 2 to 360 GHz frequency region. Several deuterium-enriched samples were generated *via* Grignard reaction of bromochlorobenzenes with a D₂O quench. The measured transitions of 22 isotopologues were least-squares fit to A- and S-reduced, sextic distorted-rotor Hamiltonians. The resultant rotational constants of all available isotopologues, with CCSD(T)/cc-pCVTZ corrections for vibration-rotation interaction and electron-mass distribution, were used to determine a highly precise semi-experimental equilibrium (r_e^{SE}) structure of chlorobenzene. The preliminary r_e^{SE} structure proved critical for finding ¹³C-atom isotopologues of the deuterium-substituted species in the available rotational spectra by enabling more accurate predictions of the rotational constants for these very low-abundance species. Transitions for several more isotopologues are expected to be available in the collected data. The highly accurate and precise r_e^{SE} structure will be compared to a CCSD(T)/cc-pCV5Z equilibrium (r_e) and r_e^{SE} structures of other molecules determined with the same methodology.