MILLIMETER-WAVE SPECTROSCOPY OF AMMONIA-WATER WEAKLY BOUNDED COMPLEX^a

<u>PRAKASH GYAWALI</u>, R. A. MOTIYENKO, L. MARGULÈS, *UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, Univ. Lille, CNRS, F-59000 Lille, France;* LUYAO ZOU, *Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, Dunkerque, France;* ISABELLE KLEINER, *Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, 75013, Paris, France.*

The broadband rotational spectra of ammonia-water (NH₃-H₂O) complex were measured in the frequency range from 50 to 250 GHz using a supersonic-jet emission spectrometer. The NH₃-H₂O complex exhibits two large amplitude motions (LAMs): almost free internal rotation of ammonia owing to very low torsional barrier ($\approx 10 \text{ cm}^{-1}$), and the inversion of water characterized by relatively high barrier ($\approx 700 \text{ cm}^{-1}$). Because of the latter and taking Doppler-limited resolution of spectrometer into account, we could not observe inversion tunneling splittings of *a*-type rotational transitions. In total, about 150 rotational transitions of NH₃-H₂O were assigned in this study. They were fitted together with the data from previous studies^b using the "hybrid" Hamiltonian approach^c. The analysis is in progress as we are currently trying to modify the characteristics of supersonic expansion in order to achieve higher rotational temperatures and consequently to measure higher K_a transitions. The latest results will be presented.

^aThis work has been supported by the French PN LEFE and ANR Labex CaPPA through the PIA under Contract No. ANR-11-LABX-0005-01 ^bP. A. Stockman, R. E. Bumgarner, S. Suzuki, & G. A. Blake, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1992); G. T. Fraser & R.D. Suenram, J. Chem. Phys. **96**, 2496 (1

^{7287 (1992)}

^cI. Kleiner & J. T. Hougen, J. Mol. Spectrosc. 368, 111255 (2020)