2-methyl-2-imidazoline, also known as lysidine, is a non-planar heterocyclic molecule containing two 14N quadrupolar nuclei and one methyl group. The rotational spectra of this molecule were recorded in the frequency range from 7 to 20 GHz using a pulsed molecular jet Fourier transform microwave spectrometer\(^a\) and in selected frequency regions between 90 and 220 GHz using two different millimetre-wave spectrometers\(^{bc}\). Lysidine displays a very rich millimetre wave spectrum presumably attributable to the presence of two large amplitude motions in the molecule: an internal rotation of the methyl group and a ring-puckering motion. The decimetre-wave spectra are even more complex as the hyperfine structure arising from the nuclear quadrupole coupling interactions of two 14N nuclei is also resolved. The first analysis of this challenging spectrum guided by quantum chemical calculations is reported in the present contribution.