PHOTODISSOCIATION DYNAMICS OF CH₂OO ON MULTIPLE POTENTIAL ENERGY SURFACES: EXPERI-MENT AND THEORY

VINCENT J. ESPOSITO, TIANLIN LIU, GUANGHAN WANG, ADRIANA CARACCIOLO, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA; MICHAEL F. VANSCO, Chemical Dynamics Group, Argonne National Laboratory, Lemont, IL, USA; ERNEST ANTWI, Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, USA; OLIVIA WERBA, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA; SARAH A. BUSH, RACHEL E. BUSH, BARBARA MARCHETTI, TOLGA N. V. KARSILI, Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, USA; MARSHA LESTER, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.

Criegee intermediates are zwitterionic carbonyl oxide species that result from alkene ozonolysis in the Earth's troposphere. UV excitation of the simplest Criegee intermediate, CH₂OO, across most of the broad span of the (B ¹A') - (X ¹A') spectrum results in prompt dissociation to two energetically accessible asymptotes: O (¹D) + H₂CO (X ¹A₁) and O (³P) + H₂CO (a ³A''). Dissociation proceeds on multiple singlet potential energy surfaces that are coupled by two regions of conical intersection (CoIn). Velocity map imaging studies reveal a bimodal total kinetic energy (TKER) distribution for the O (¹D) + H₂CO (X ¹A₁) products. The unexpected low TKER component corresponds to highly internally excited H₂CO (X ¹A₁) products. Full dimensional trajectory calculations suggest that the bimodal TKER distribution of the O (¹D) + H₂CO (X ¹A₁) products originates from two different dynamical pathways: a primary pathway evolving through one CoIn region to products and a smaller component sampling both CoIn regions during the dissociation process. Those that access both CoIn regions likely give rise to the more highly internally excited H₂CO (X ¹A₁) products. The remaining trajectories dissociate to O (³P) + H₂CO (a ³A'') products after traversing through both CoIn regions. No trajectories follow the more thermodynamically favorable spin-forbidden pathway to O (³P) + H₂CO (X ¹A₁) products. This complementary experimental and theoretical investigation provides insight into the photodissociation of CH₂OO via multiple dissociation provides insight into the photodissociation of CH₂OO via multiple dissociation provides insight into the photodissociation of CH₂OO via multiple dissociation provides insight into the photodissociation of CH₂OO via multiple dissociation provides insight into the photodissociation of CH₂OO via multiple dissociation provides insight into the photodissociation of Products