WEAKLY-BOUND COMPLEX FORMATION BETWEEN HCN AND CH₃Cl: A MATRIX-ISOLATION AND COM-PUTATIONAL STUDY

EMILY K HOCKEY, Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD, USA; KORINA VLAHOS, Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD, USA; THOMAS HOWARD, JESSICA PALKO, LEAH G DODSON, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA.

Matrix-isolation spectroscopy is used to characterize the weakly-bound complex(es) of hydrogen cyanide with methyl chloride, two astrophysically relevant molecules. HCN and its polymers captivate interstellar discussions of prebiotic monomers and other life-bearing polymers, while CH_3Cl leads as the first organohalogen detected in space. This highlights the importance of studying their reactivity. In this talk, we will describe our new matrix-isolation instrument, constructed at the University of Maryland, and how we identify the structure of the weakly-bound complexes [(HCN)_nCH₃Cl] that form upon co-condensation of HCN and CH_3Cl in an argon matrix. Infrared spectroscopy is used in tandem with quantum chemistry calculations to characterize the vibrational spectrum of the resulting complexes. Our work reveals preferential formation of matrix-isolated HCN trimer species in the presence of CH_3Cl , qualitatively characterized by non-covalent interactions though natural bond orbital calculations. Finally, we will discuss the astrochemical implications of the resulting complexes and HCN trimer formation.