OXYGEN ATOM DIFFUSION BY QUANTUM TUNNELING IN SOLID PARAHYDROGEN: A NEW TOOL TO STUDY LOW TEMPERATURE SOLID STATE REACTIONS

IBRAHIM MUDDASSER, DAVID T. ANDERSON, Department of Chemistry, University of Wyoming, Laramie, WY, USA.

In quantum crystals such as solid parahydrogen (pH_2) , there is considerable overlap between the wavefunctions of molecules in neighboring lattice sites, such that added chemical impurities can exchange positions with nearest-neighbor pH_2 molecules and thereby quantum diffuse through the solid. Our group and others have taken advantage of the quantum diffusion of hydrogen atoms in solid pH_2 to study various low temperature hydrogenation reactions.^{*a*} In this talk, we report the first experimental evidence of atomic oxygen diffusion in solid pH_2 . O₂ doped pH_2 samples are irradiated at 193 nm to produce $O(^{3}P)$ atoms, and repeated FTIR spectra are collected to map out the temporal behavior during and after photolysis. The experimental proof of mobile O-atoms

is provided by the formation of ozone (O₃), which forms via the barrierless $O + O_2 + M \rightarrow O_3 + M$ reaction. After photolysis, while the system is kept in the dark, continued growth in the O₃ concentration with time is detected, indicating that O-atoms are mobile and reacting with O₂ present in the solid. The O₃ growth after photolysis is fit to first-order kinetics equations to extract the rate constant. Kinetics measurements show that the O-atom reaction rate more than doubles in annealed crystals compared to as-deposited crystals. This finding is consistent with the expectation that quantum diffusion is more facile in homogeneous samples with minimum defects. In fact, some proportion of the photo-produced O-atoms get trapped in as-deposited samples and can only be made mobile by annealing the sample. Currently, we are studying the effects of the photolysis conditions, temperature, and doped O₂ concentration on the reaction rate constant. This study shows that O-atoms can be isolated in solid pH₂ and that they are delocalized. Through double doping experiments, we hope to develop this method to study O-atom reactions with other species under controlled low temperature conditions.

^aF. M. Mutunga et al., J. Chem. Phys. 154 (2021) 014302.