STUDY OF THE KINETICS AND PRODUCT YIELDS FOR THE REACTION OF CRIEGEE INTERMEDIATE CH_2OO WITH HNO_3 USING MID-INFRARED TIME-RESOLVED DUAL-COMB SPECTROSCOPY

PEI-LING LUO, Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan.

The reaction of Criegee intermediates with HNO₃ have been thought to be important in the oxidation of atmospheric HNO₃ because of the fast reaction rates, over 3 orders of magnitude larger than that of the OH + HNO₃ reaction.^{*a*} In particular, a new catalytic conversion of the simplest Criegee intermediate CH_2OO to OH and HCO radicals by HNO₃ was proposed in recent theoretical study.^{*b*} Herein, the mid-infrared dual-comb spectrometers^{*c*} with the capability of widely wavelength tunability and switchable dual-comb and continuous-wave operation modes were employed to investigate the reaction kinetics and determine the branching ratios of the primary product channels in the reaction $CH_2OO + HNO_3$. Based on quantitative determinations of CH_2OO , CH_2O , OH and HO_2 radicals under various experimental conditions, the pressure-dependent yields of the OH and HO_2 product channels of the reaction $CH_2OO + HNO_3$ were evaluated in this work.

^aKhan, M. A. H.; Percival, C. J.; Caravan, R. L.; Taatjes, C. A.; Shallcross, D. E. Environ. Sci.: Processes Impacts 2018, 20, 437–453.

^bRaghunath, P.; Lee, Y.-P.; Lin, M. C. J. Phys. Chem. A 2017, 121, 3871–3878.

^cLuo, P.-L.; Horng, E.-C. Commun Chem 2020, 3, 95; Luo, P.-L. Opt. Lett. 2020, 45, 6791–6794.