PRODUCTION OF \bullet CH₂NH₂ AND CH₂NH IN THE REACTIONS OF METHYLAMINE (CH₃NH₂) WITH \bullet H OR \bullet OH IN SOLID p-H₂ AND ITS IMPLICATION IN ASTROCHEMISTRY

PRASAD RAMESH JOSHI, Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; YUAN-PERN LEE, Department of Applied Chemistry, Institute of Molecular Science, and Centre for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

Methylamine (CH₃NH₂) is considered to be a potential precursor for the formation of interstellar glycine through the reaction between aminomethyl radical (•CH₂NH₂) and HOCO, but direct evidence of the formation and spectral identification of •CH₂NH₂ remains unreported. Taking advantage of unique properties associated with the para-hydrogen $(p-H_2)$ matrix, we performed the reaction H + CH₃NH₂ in solid $p-H_2$ at 3.2 K. To generate H atoms, photolysis at 365 nm of a co-deposited mixture of CH₃NH₂/p-H₂ and Cl₂ to produce Cl atoms and subsequent IR irradiation for promoting the $Cl + H_2 (\nu = 1) \rightarrow H + HCl$ reaction were carried out. IR spectra of $\bullet CH_2NH_2$ and CH_2NH were observed upon UV/IR irradiation and when the matrix was maintained in darkness. The new IR spectrum of •CH2NH2 clearly indicates that •CH₂NH₂ can be formed from the reaction H + CH₃NH₂ in dark interstellar clouds. Experiments on CD₃NH₂ produced CHD₂NH₂, in addition to •CD₂NH₂ and CD₂NH, confirming the occurrence of H addition to •CD₂NH₂. The potentialenergy scheme of H + CH₃NH₂ reactions reveals the feasibility of sequential H-abstraction and H-addition reactions for the formation of products observed in this study. The observed dual-cycle mechanism containing two consecutive Habstraction and two H-addition steps chemically connects CH₃NH₂ and CH₂NH and might imply their quasi-equilibrium. In another experimental method, photolysis at 250 nm of a H₂O₂-doped CH₃NH₂/p-H₂ matrix was performed to generate •OH to facilitate the •OH + CH_3NH_2 reaction; further reaction of •OH + $H_2 \rightarrow H_2O$ + H might also trigger the H + CH₃NH₂ reaction. Significantly more •CH₂NH₂ was produced than in CH₃NH₂/Cl₂/p-H₂ experiments, consistent with a barrier predicted for •OH + CH₃NH₂ much smaller than that for H + CH₃NH₂. All species observed herein are plausible starting materials for interstellar glycine in molecular clouds.