INTERMOLECULAR FREQUENCIES OF N₂O–KR AND SYMMETRY BREAKING OF THE N₂O BENDING MODE IN THE PRESENCE OF A RARE GAS

CHRIS GERGESS, <u>M. DEHGHANY</u>, Department of Chemistry and Physics, Mount Royal University, Calgary, AB, Canada; K. H. MICHAELIAN, CanmetENERGY, Natural Resources Canada, Edmonton, Alberta, Canada; A.R.W. McKELLAR, Steacie Laboratory, National Research Council of Canada, Ottawa, ON, Canada; NASSER MOAZZEN-AHMADI, Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.

Rotationally-resolved infrared spectra of N₂O–Ar and N₂O-Kr van der Waals clusters are studied in the region of the N₂O ν_1 vibration ($\approx 2224 \text{ cm}^{-1}$) using a tunable Quantum Cascade laser source to probe a pulsed supersonic jet. The N₂O-Kr ν_1 fundamental band is re-analyzed, together with previous ν_3 band data, using a unified scheme to fit the (small) observed Kr isotope splittings. This scheme is then transferred to analyze the bending combination band of N₂O-Kr near 2257 cm⁻¹ where isotope effects are much larger due to stretch-bend Coriolis interactions. As a result, N₂O-Kr intermolecular bend (33.29 cm⁻¹) and stretch (34.48 cm⁻¹) frequencies are directly determined for the first time.

We also report observation of weak spectra for both N₂O-Ar and -Kr corresponding to the $(\nu_1, \nu_2^{l_2}, \nu_3) = (1,1^1,0) \leftarrow (0,1^1,0)$ hot band of N₂O, located around 2209.8cm⁻¹. In the presence of Argon/Krypton atom, the doubly-degenerate ν_2 bending mode of the N₂O monomer splits into an in-plane and an out-of-plane mode. These two infrared bands are heavily linked by Coriolis interactions and their analysis yields the magnitude of the splitting of the bending modes which are significantly smaller than those observed in the analogous CO₂-containing dimers ^{*a*}. The experimental results obtained here are valuable for testing the accuracy of theoretical calculation toward a better understanding of intermolecular interactions.

^aT.A. Gartner, A.J. Barclay, A.R.W. McKellar, and N. Moazzen-Ahmadi, Phys. Chem. Chem. Phys. 22, 21488-21493 (2020).