
FIRST ANALYSIS OF THE ν_1 BAND OF HNO₃ AT 3551.766 CM⁻¹

AGNES PERRIN, Laboratoire de Meteorologie Dynamique, Ecole Polytechnique, University Paris Saclay and CNRS, Paris, France; LAURENT MANCERON, Synchrotron SOLEIL, CNRS-MONARIS UMR 8233 and Beamline AILES, Saint Aubin, France; RAYMOND ARMANTE, Ecole Polytechnique, CNRS / Laboratoire de Météorologie Dunamique, 91128 Palaiseau, France; P. ROY, AILES beam line, Synchrotron Soleil, Gif-sur-Yvette, France; F. KWABIA TCHANA, CNRS - Université de Paris - Université Paris Est Créteil , LISA, Créteil, France; GEOFFREY C. TOON, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.

We present the first (preliminary) investigation of the ν_1 band (OH stretching mode) of Nitric acid (HNO₃) centered at 3551.766 cm⁻¹ using high resolution Fourier transform spectra. These spectra were recorded in the 2.5 μ m to 3.23 μ m spectral regions on the spectrometer located on the AILES beamline of the SOLEIL synchrotron. Because of the large value of the Doppler linewidth (about 0.003 cm⁻¹) in the 2.8 μ m region at 220 K or 296 K), the analysis was very complex and often uncertain and dubious. Furthermore, the ν_1 band is severely affected by numerous perturbations. Among these ones, unexpected line splittings were observed during all the analyses. Finally we have generated a preliminary list of "reasonable" line positions and intensities for the ν_1 band and of the $\nu_1+\nu_9$ - ν_9 bands and $\nu_1+\nu_7$ - ν_7 hot bands.