THE INTRIGUING $F_{b c}\left(P_{b} P_{c}+P_{c} P_{b}\right)$ TERM IN THE INTERACTION HAMILTONIAN FOR TUNNELING BETWEEN EQUIVALENT GAUCHE CONFORMERS

PETER GRONER, Department of Chemistry, University of Missouri - Kansas City, Kansas City, MO, USA.
This study was triggered by the results of the microwave investigation of triflic acid (TA), $\mathrm{CF}_{3}-\mathrm{SO}_{2}-\mathrm{OH}$, and its deuterated (TA-d) and ${ }^{34} \mathrm{~S}$ (TA-S) isotopologues by Huff et al. ${ }^{a}$ To fit the observed transitions split by gauche-gauche tunneling due to the CS-OH internal rotation, the interaction Hamiltonians for TA and TA-S required the term $F_{b c}\left(P_{b} P_{c}+\right.$ $P_{c} P_{b}$). In contrast, the Coriolis term $g_{a} P_{a}$ had to be used for TA-d.

The $F_{b c}$ term results from two facts: 1) The moment of inertia tensor I and its inverse, the μ-tensor, of both the right- and left-handed forms of the gauche conformers need to be expressed in the same molecule-fixed axis system; 2) The Cartesian coordinates of some or all atoms and the components of I depend on the internal rotation coordinate τ. If we define a Cartesian axis system with two of the axes in the symmetry plane of the transition state between the two conformers, the third axis is perpendicular to it. When τ changes, the moving atoms will eventually cross the symmetry plane and their 3rd Cartesian coordinate will change its sign and with it also the signs of two off-diagonal components of I and the μ-tensors.

The rotational Hamiltonian in a 2-by-2 block format contains the contributions of the right and left gauche conformers (H_{R} and H_{L}, respectively) on the diagonal and the Coriolis interactions in the off-diagonal blocks. If the internal rotation wave functions ϕ_{R} and ϕ_{L} are symmetrized to $\phi_{A^{\prime}}$ and $\phi_{A^{\prime \prime}}$ to conform with C_{s} symmetry, the diagonal blocks of the Hamiltonian become $H_{A^{\prime}}$ and $H_{A^{\prime \prime}}$. The off-diagonal blocks contain now the Coriolis terms and the contributions from the sign-changing μ-tensor components.

Detailed explanations and a demonstration that this particular interaction may be especially important for $K_{a}=1$ energy levels will be presented.

[^0]
[^0]: ${ }^{a}$ A.K. Huff, N. Love, C.J. Smith, K.R. Leopold, (2022) submitted for publication.

