VIBRATIONAL CHARACTERIZATION OF HEMI-BONDED HALIDE-THIOCYANATE DIMER RADICAL ANIONS (XSCN)⁻⁻ IN WATER

IRENEUSZ JANIK, SUSMITA BHATTACHARYA, Radiation Laboratory, University of Notre Dame, Notre Dame, IN, USA.

Time resolved Raman studies of halide-thiocyanate dimer radical anions, (X-SCN)⁻ (for X=Cl, Br, I), were performed in resonance with their peak of light absorption wavelength at 415 nm. In two of the experiments (for $X^-=Br^-$ or I^-) the apparent Raman spectrum contains signatures of three hemibonded intermediates present simultaneously in mutual equilibria with their precursor and successor hemibonded radical counterparts: $X_2^{-} + SCN^{-} = (XSCN)^{-} + X^{-} = (SCN)_2^{-}$ + X^- . In order to extract (X-SCN)⁻ (for X=Br, I) from the composite spectrum additional experiments were performed to generate pre-resonance spectra of X_2 - and $(SCN)_2$ - at 415 nm in order to collect and then subtract their contributions from the composite spectrum. Ten Stokes Raman bands of the halide-thiocyanate radical anions (X-SCN)⁻⁻ (for X=Br, I) were observed in the 60-2400 cm⁻¹ region. They were assigned in terms of the strongly enhanced 198 and 174 cm⁻¹, weakly enhanced 719.5 and 729cm⁻¹, and moderately enhanced 2069 and 2078cm⁻¹ fundamentals, their overtones, and combinations in BrSCN⁻ and ISCN⁻, respectively. On attempt to record chloride intermediate only characteristic bands coming from the mixed contributions of Cl2^{.-} and (SCN)2^{.-} have been apparent. Quantum chemical calculations using a range-separated hybrid density functional ($\omega B97x$) with flexible augmented correlation-consistent basis sets support the spectroscopic assignments of the strongest fundamental vibrations to a predominantly S-X (X = Br, I) stretching mode and the features around 720cm⁻¹ and 2070cm⁻¹ to CS and CN symmetric stretching modes, respectively. Interestingly, CS and CN bond stretching vibrational frequencies in asymmetrical (X-SCN)⁻⁻ anion radicals are shifted a few wavenumbers down or up in comparison to the symmetrical (SCN)2^{.-} molecule in BrSCN^{.-} or ISCN^{.-}, respectively. Considering that CISCN⁻⁻ seems to have vibrational frequencies almost identical to $(SCN)_2^{--}$ does not grant any systematic correlation between hemi-bond polarization in this array of molecules and vibrational frequencies of CS and CN bonds. A possible explanation of such an observation can relate to a counteracting induction and migration effects in σ and π bonds, respectively, upon charge migration across the molecule.