
INFRARED PREDISSOCIATION SPECTROSCOPY OF PROTONATED METHYL CYANIDE

<u>ARAVINDH NIVAS MARIMUTHU</u>, FRANK HUIS IN'T VELD, *FELIX Laboratory, Radboud University, Nijmegen, The Netherlands*; SVEN THORWIRTH, *I. Physikalisches Institut, Universität zu Köln, Köln, Germany*; BRITTA REDLICH, SANDRA BRÜNKEN, *FELIX Laboratory, Radboud University, Nijmegen, The Netherlands*.

Methyl cyanide (CH₃CN) was among the first polyatomic molecules detected by radio-astronomical observations of the interstellar medium (ISM)[1]. As methyl cyanide has a proton affinity much larger than that of H₂, its protonated version (CH₃CNH⁺) is postulated to form efficiently via exothermic proton transfer from H₃⁺ to CH₃CN in the interstellar medium. In this talk, we present a comprehensive experimental and quantum-chemical study of the gas phase vibrational spectrum of CH_3CNH^+ [2]. We employed the widely tuneable free electron lasers for infrared experiments (FELIX) coupled to a cryogenic ion trap instrument [3] for our measurements. The spectrum was recorded in the 300-1700 and 2000-3300 cm^{-1} spectral regions using infrared predissociation (IRPD) action spectroscopy with neon as a weakly bound messenger atom. The assignment of the vibrational modes is based on anharmonic frequency calculations performed at the CCSD(T)/ANO2 level of theory. We demonstrate that the comparatively low-cost ANO0 basis-set provides accurate estimates on the influence of the weakly-bound neon atom as a tag in the IRPD experiments. The data presented here will support astronomical searches for the CH₃CNH⁺ ion in space.

^[1] P.M. Solomon, K.B. Jefferts, A.A. Penzias and R.W. Wilson, Astrophys. J. 168 (1971) L107

^[2] A. N. Marimuthu, F. Huis in't Veld, S. Thorwirth, B. Redlich and S. Brünken, J. Mol. Spec. 379 (2021) 111477

^[3] P. Jusko, S. Brünken, O. Asvany, S. Thorwirth, A. Stoffels, L. van der Meer, G. Berden, B. Redlich, J. Oomens and S. Schlemmer, Faraday Discuss. 217, (2019), 172