FORBIDDEN ROTATIONAL TRANSITIONS AND ASTROPHYSICS

<u>TAKESHI OKA</u>, Department of Astronomy and Astrophysics and Department of Chemistry, The Enrico Fermi Institute, University of Chicago, Chicago, IL, USA.

When I read Townes and Schawlow's textbook as a beginning student, I was puzzled by the symmetric top selection rule $\Delta K = 0$, because this rule corresponds to cylindrical symmetry C_{∞} ; applying it to NH₃ with C_3 symmetry cannot be right. At that time, however, I did not pursue how this wrong rule affect the actual spectrum. 10 years later interstellar NH₃ was discovered by Townes' group. When I read the discoverers' claim that lifetimes of (J, K) = (2,2) and (3,3) metastable levels are "longer than the lifetime of the Universe", it was obvious that this wrong statement resulted from the wrong ΔK = 0 selection rule. Accurate theory^a gave the life times of the (2,2) and (3,3) metastable levels to be 230 years and 44 years, respectively, 10⁸ times shorter than the lifetime of the Universe. The theory also predicted $\Delta k = \pm 3$ pure rotational transitions which were observed for PH₃, PD₃ and AsH₃^b

In this paper^c I calculate spontaneous emission via forbidden transitions for astrophysically important symmetric tops; oblate tops NH_3 , H_3O^+ , H_3^+ , and prolate tops CH_3CN . These calculations are preparations for future analyses of ther thermalization.

^aT. Oka, F.O. Shimiza, T. Shimizu, J.K.G. Watson, ApJ 165, L15 (1971)

^bF.Y. Chu, T. Oka, J. Chem. Phys. 60, 4612 (1974)

^cT. Oka, J. Mol. Spectrosc. 379, 111482 (2021)