SPECTROSCOPY AND PREDISSOCIATION DYNAMICS OF SH RADICALS VIA THE A $^{2}\Sigma^{+}$ STATE

YUAN QIN, XIANFENG ZHENG, YU SONG, GE SUN, Department of Chemistry, University of California, Riverside, CA, USA; JINGSONG ZHANG, Department of Chemistry and Air Pollution Research Center, University of California, Riverside, CA, USA.

The spectroscopy and predissociation dynamics of several vibronic levels ($\nu' = 0.6$) of the SH A² Σ^+ state have been studied using the high-*n* Rydberg atom time-of-flight (HRTOF) technique. By measuring the product translational energy distributions as a function of excitation wavelength, the H + S(³P_J) photofragment yield (PFY) spectra are obtained across the various A² $\Sigma^+ \leftarrow X^2\Pi$ bands. The PFY spectra of the A² $\Sigma^+ \nu' = 3.6$ states exhibit broad linewidths (> 4 cm⁻¹), indicating that these levels undergo rapid predissociation with lifetimes on the order of picosecond. The measured spinorbit branching fractions of the H + S(³P_{J=2,1,0}) product channels provide insights to the predissociation dynamics of the A² Σ^+ state, which change dramatically as the vibrational level ν' increases. The A² $\Sigma^+ \nu' = 0$ state of SH predissociates mainly through adiabatic coupling to the ⁴ Σ^- repulsive state, while all three repulsive states (⁴ Σ^- , ² Σ^- , and ⁴ Π) are involved in the dissociation pathways for higher vibrational levels.