DIRECT ELUCIDATION OF THE REASON FOR ALMOST THE SAME BOND LENGTHS FOR THE C–H AND C–D BONDS IN C_6H_6 AND C_6D_6 : A PATH INTEGRAL MOLECULAR DYNAMICS STUDY

TARO UDAGAWA, HIKARU TANAKA, Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan; KAZUAKI KUWAHATA, Graduate school of Nanobioscience, Yokohama City University, Yokohama, Japan; MASAAKI BABA, Molecular Photoscience Research Center, Kobe University, Kobe, Japan; TSUNEO HIRANO, Department of Chemistry, Ochanomizu University, Tokyo, Japan; UMPEI NA-GASHIMA, MASANORI TACHIKAWA, Graduate school of Nanobioscience, Yokohama City University, Yokohama, Japan.

Recently, Baba group found that ro-vibrationally averaged bond lengths of C–H and C–D are observed as being almost identical ($r_{0,\text{eff}}(\text{C}-\text{H}) \cong r_{0,\text{eff}}(\text{C}-\text{D})$) for planar aromatic hydrocarbons from high-resolution laser spectroscopy.^{*a*} Quite recently, the reason of the same $r_{0,\text{eff}}(\text{C}-\text{H})$ and $r_{0,\text{eff}}(\text{C}-\text{D})$ bond lengths has been brilliantly unveiled by Hirano et al. by high-level *ab initio* molecular orbital calculations.^{*b*} They revealed that the experimental bond lengths derived from effective rotational constants are "not" the ro-vibrationally averaged bond lengths but their projected lengths on the principle axis.

In this study, we have carried out the path integral molecular dynamics (PIMD) simulations for C_6H_6 and C_6D_6 to directly estimate the distribution of the C–H and C–D bond lengths projected onto the principle axis. Our PIMD simulation strongly supports the previous explanation by Hirano et al.^{*a*} for the experimentally observed fact ($r_{0,eff}$ (C–H) \cong $r_{0,eff}$ (C–D)) in C_6H_6 and C_6D_6 .

^aS. Kunishige, T. Katori, M. Baba, et al., J. Chem. Phys. 143, 244302 (2015).

^bT. Hirano, U. Nagashima, M. Baba, J. Mol. Struct. **1243**, 130537 (2021).