PROTON, HYDRIDE, OR NEITHER? THE IDENTITY OF H IN THE Au₉(PPh₃)₈H²⁺ CLUSTER

HANNA MORALES HERNANDEZ, JONATHAN WOOD FAGAN, CHRISTOPHER J. JOHNSON, *Chemistry, Stony Brook University, Stony Brook, NY, USA*.

The diverse tunability of gold nanoclusters via size, geometry, and ligand chemistry allows them to be optimized for greater catalytic activity, selectivity, and optoelectronic properties. The binding of a hydride to $Au_9(PPh_3)_8^{3+}$ to form $Au_9(PPh_3)_8H^{2+}$ has raised the question of whether the hydride behaves as a metal dopant which donates its two electrons to the Au core or whether it behaves as an electron-withdrawing ligand such as Cl^- and Br^- . We previously showed significant similarities between its electronic absorption spectrum to that of $Au_9(PPh_3)_8Cl^{2+}$ and $Au_9(PPh_3)_8Br^{2+}$, but follow-up theoretical work suggested that this was a coincidence. Here we analyze the infrared absorption spectra of $Au_9(PPh_3)_8H^{2+}$ with a single N₂ or H₂O molecule physiosorbed onto the cluster to further elucidate the role of the hydride in $Au_9(PPh_3)_8H^{2+}$.