THE HIGHER TORSIONAL STATES OF METHYLAMINE - PRELIMINARY ANALYSIS

<u>IWONA GULACZYK</u>, MAREK KREGLEWSKI, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland.

Methylamine is a molecule performing two strongly coupled large amplitude motions: CH_3 internal rotation and NH_2 inversion. The rovibrational spectrum of the methylamine molecule has been extensively studied both experimentally and theoretically. The analyses of infrared bands such as NH_2 inversion or CN stretching show significant perturbations from highly excited torsional states. In order to untangle the interactions in the $700-1200 \text{ cm}^{-1}$ region of the methylamine spectrum, it is crucial to assign the perturbing excited torsional states ($3\nu_{15}$ and $4\nu_{15}$). Both states are located well above the top of the torsional barrier. Thus, the splittings between the lower and upper sublevels are very large (80 to 180 cm^{-1}) and only low lying sublevels of $3\nu_{15}$ or $4\nu_{15}$ will be experimentally identified. The spectra were recorded with a resolution of 0.00125 $\rm cm^{-1}$ using Bruker IFS-120HR spectrometer at the University of Oulu. The accurate energy levels of the first excited torsional state, ν_{15} , ^{a b} were used as reference values for lower state combination differences in the assignments of the third and fourth torsional hot bands, $3\nu_{15}$ - ν_{15} and $4\nu_{15}$ - ν_{15} . After the complete analysis in the second torsional overtone region (360-720 cm⁻¹) was performed ^c, many of the remaining unassigned lines in this region could be assigned to v=3-1 and v=4-1 bands. Earlier, about 200 transitions of B, E_{1+1} and E_{1-1} symmetry for the $3\nu_{15}$ and 28 transitions of B symmetry for $4\nu_{15}$ were found ^d. On the basis of the calculated energy levels for the third and fourth excited torsional states, many transitions of the hot band v=3-1, not assigned previously, have been identified (over 1500 transitions for all symmetry species). As for v=4-1, so far, the previously assigned series were only extended to higher J values (over 100 transitions assigned of B symmetry), but the analysis is in progress. All the assignments were confirmed by the LSCD. Each set of the experimental data was fit to a single state model based on the group theoretical formalism e^{e} .

^aI. Gulaczyk, M. Kreglewski, V-M. Horneman, J. Mol. Spectrosc. 342 (2017) 25-30

^bI. Gulaczyk, M. Kreglewski, JQSRT 252 (2020) 107097

^cI. Gulaczyk, M. Kreglewski, V-M. Horneman, JQSRT 217 (2018) 321–328

^dN. Ohashi, H. Shimada, W. B. Olson, K. Kawaguchi, J. Mol. Spectrosc. 152 (1992) 298

^eN. Ohashi and J.T. Hougen, J. Mol. Spectrosc. 121 (1987) 474