SPECTROSCOPIC CONSTANTS AND POTENTIAL FUNCTIONS FOR THE $A^3\Pi_1$ AND $X^1\Sigma^+$ STATES OF IBr BY USING MERGED DATA OF STARK SPECTROSCOPY

<u>NOBUO NISHIMIYA</u>, TOKIO YUKIYA, KATSUKI NOMURA, MASAO SUZUKI, Faculty of Engineering, Tokyo Polytechnic University, Atsugi, Japan.

The $A \leftarrow X$ electronic transition spectra of halogen diatomic molecules have been measured to determine the molecular constants and the parameters of potential energy by various researchers.^{*a,b,c*}

In 2002, the Dunham coefficients of the X state and rotation-vibration parameters of the A state of IBr were determined by using the assigned line position of spectroscopic data in the range from v' = 3 - 20 to v'' = 1 - 6 and nuclear quadrupole coupling constants were also reported.^d An anomalous fluctuations in the v – dependence of the first differences of the inertial rotational constant, $\Delta B'_v = B_{v'+1} - B'_v$ in the $A^3\Pi_1$ was found more than v = 19 region. In 2015, we reported a new nonlinear direct potential fitting (DPF) analysis that uses "robust" nonlinear least-squares fits to average properly over the effect of such fluctuations in order to provide an optimum delineation of the underlying potential energy curve(s).^e

In the near dissociation limit, it would be difficult to assign the spectra, because in

that area, too dense spectra would be observed. By adopting Stark spectroscopy, the relatively low J spectra are emphasized and the high J spectra become smaller as shown in the figure. This makes it easier to assign the low J spectra even in dense regions. This work reports the spectroscopic constants refined and the parameters of potential energy curve recalculated.

^aSelin et al, Ark. Fys. **21** (1962) 479.

^bCoxon et al, JMS **79** (1983) 363, 380.

^cHeddrich et al, JMS **79** (1992) 384.

^dYukiya et al, JMS **214** (2002) 132.

^eLe Roy, J.Quant.Spectorsc.Rad.Trans. 186(2017) 179.