RO-VIBRATIONAL SPECTROSCOPY OF LINEAR C3H+

PHILIPP C SCHMID, THOMAS SALOMON, SVEN THORWIRTH, OSKAR ASVANY, STEPHAN SCHLEMMER, I. Physikalisches Institut, Universität zu Köln, Köln, Germany.

The C_3H^+ ion has been identified as an important reaction intermediate in the carbon chemistry network in the interstellar medium and was recently detected via its rotational lines^{*a*}. Laboratory measurements on the rotational spectrum of linear C_3H^+ provided accurate spectroscopic parameters for the vibrational ground state^{*b*}. In addition, vibrational predissociation spectroscopy of the linear C_3H^+ -Ne complex offered first insights on the vibrational band positions of this molecule^{*c*}.

Here, we report on the first infrared study of C_3H^+ at high spectral resolution that was targeted at the C–H stretching mode ν_1 located around 3170 cm⁻¹. The experiment was performed in our cryogenic multipole 22-pole ion trap instrument LIRtrap. In addition to the vibrational fundamental, the associated $\nu_1 + \nu_5 \leftarrow \nu_5$ hot band originating from the energetically lowest bending mode could be detected. Both spectra are in good agreement with estimates based on previous quantum-chemical calcultions and low-resolution measurements.

^aJ. Pety et al., A&A 548(2012)A68., B. McGuire et al., Ap. J. 774(2013)56.

^bS. Brünken et al., Ap. J. Lett. 783(2014)L4.

^cS. Brünken et al., J. Phys. Chem. A 123(2019)8053.