SPECTROSCOPIC STUDY OF THE $\mathrm{N}_{2}-\mathrm{H}_{2} \mathrm{O}$ COMPLEX IN THE 2 OH STRETCHING REGIONS

ROBIN GLORIEUX, Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Louvain-la-Neuve, Belgium; ALEXANDR BOGOMOLOV, Institute of Chemical Kinetics and Combustion, Novosibirsk State University , Novosibirsk, Russia; BRIAN M HAYS, Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Louvain-la-Neuve, Belgium; THOMAS VANFLETEREN, Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles, Brussels, Belgium; MICHEL HERMAN, SQUARES, Université Libre de Bruxelles, Brussels, Belgium; NASSER MOAZZEN-AHMADI, Physics and Astronomy/Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada; CLÉMENT LAUZIN, Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Louvain-la-Neuve, Belgium.

Rovibrational spectra of $\mathrm{N}_{2}-\mathrm{H}_{2} \mathrm{O}$ van der Waals complexes were measured in the overtone range, around the 2 OH stretching regions. The rotationally resolved $\left(\nu_{1}^{\prime}, \nu_{2}^{\prime}, \nu_{3}^{\prime}\right) \leftarrow\left(\nu_{1}^{\prime \prime}, \nu_{2}^{\prime \prime}, \nu_{3}^{\prime \prime}\right)=(2,0,0) \leftarrow(0,0,0)$ and $(1,0,1) \leftarrow(0,0,0)$ vibrational bands were observed; where $\nu_{1}, \nu_{2}, \nu_{3}$ are the vibrational quantum numbers of the isolated water molecule. As well, a combination band involving the $(1,0,1)$ state and the intermolecular in-plane N_{2} bending vibration will be presented. The spectra were measured using continuous wave cavity ringdown spectroscopy in a supersonic expansion, as implemented in the FANTASIO+ setup [1,2]. These spectra were analyzed by considering the feasible tunneling motions of this complex, fitted as separate asymmetric rotors for the four observed tunneling states. The tunneling splittings are discussed as a function of the vibrational state and compared with other isotopologues. The assignment of a rovibrational perturbation will also be discussed.
[1] M. Herman, K. Didriche, D. Hurtmans, B. Kizil, P. Macko, A. Rizopoulos, P.V. Poucke, Molecular Physics, 2007, 105 (5-7), 815-823.
[2] A.S. Bogomolov, A. Roucou, R. Bejjani, M. Herman, N. Moazzen-Ahmadi, C. Lauzin, Chemical Physics Letters, 2021, 774, 138606.

