HIGH-RESOLUTION SPECTROSCOPY OF MgKr⁺ IN ITS GROUND AND LOW-LYING ELECTRONICALLY EXCITED STATES

<u>CARLA KREIS</u>, Laboratory of Physical Chemistry, ETH Zurich, Zürich, Switzerland; MATTHIEU GÉNÉVRIEZ, Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Louvain-la-Neuve, Belgium; FRÉDÉRIC MERKT, Laboratorium für Physikalische Chemie, ETH Zurich, Zurich, Switzerland.

Diatomic molecules RgM consisting of a rare-gas atom Rg and an alkaline-earth-metal atom M and their singly and doubly-charged cations RgM⁺ and RgM²⁺ have unusual chemical properties that are related to the low first and second ionization energies of M and the high ionization energy of Rg. In MgAr the second ionization energy of Mg is lower than the first ionization energy of Ar. Consequently, MgAr²⁺ is thermodynamically stable and Rydberg series of MgAr⁺ can be observed that converge on the X²⁺ ${}^{1}\Sigma^{+}$ ground state of MgAr²⁺.^{*a*} In this contribution, we present the results of spectroscopic investigations of MgKr⁺ in its ground and low-lying electronically excited states that complement earlier studies of this cation.^{*b,c*} Pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectra of the X⁺ ${}^{2}\Sigma^{+}$ ground state of MgKr⁺ were recorded following single-photon excitation from the *a* ${}^{3}\Pi_{0}$ metastable state of MgKr. Vibrational channel interactions enabled the observation of the lowest vibrational levels of MgKr⁺ and the determination of an accurate value of the adiabatic ionization energy of metastable MgKr ($38183\pm2cm^{-1}$). Using isolated-core multiphoton Rydberg dissociation (ICMRD) spectroscopy,^{*d*} spectra of several low-lying electronically excited states of MgKr⁺ were observed that are associated with the Kr + Mg⁺(*nl*) dissociation limits with *n* = 3, 4 and *l* = *s*, *p* and *d*. These states may be regarded as the lowest members of Rydberg series converging on the ground state of MgKr²⁺. These studies represent first steps towards studying the doubly charged cation MgKr²⁺.

^aD. Wehrli, M. Génévriez and F. Merkt, Phys. Chem. Chem. Phys., 23, 10978, (2021) and references therein

^bJ. G. Kaup and W. H. Breckenridge, J.Chem. Phys. 107, 2180, 1997

^cJ. S. Pilgrim, C. S. Yeh, K. R. Berry, M. A. Duncan, J. Chem. Phys., 100, 7945, (1994)

^dM. Génévriez, D. Wehrli and F. Merkt, Mol. Phys. 118, e1703051 (2019)