WEAKLY BOUND CLUSTERS OF ATMOSPHERIC MOLECULES: INFRARED SPECTRA AND STRUCTURAL CALCULATIONS OF $(CO_2)_n$ - $(CO)_m$ - $(N_2)_p$, (n,m,p) = (2,1,0), (2,0,1), (1,2,0), (1,0,2), (1,1,1), (1,3,0), (1,0,3), (1,2,1), (1,1,2)

<u>A. J. BARCLAY</u>, Physics and Astronomy/Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada; A.R.W. McKELLAR, Steacie Laboratory, National Research Council of Canada, Ottawa, ON, Canada; ANDREA PIETROPOLLI CHARMET, Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Venezia, Italy; NASSER MOAZZEN-AHMADI, Physics and Astronomy/Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada.

Structural calculations and high-resolution infrared spectra are reported for trimers and tetramers containing CO₂ together with CO and/or N₂. Among the 9 clusters studied here, only $(CO_2)_2$ -CO was previously observed by high-resolution spectroscopy. The spectra, which occur in the region of the ν_3 fundamental of CO₂ (~2350 cm⁻¹), were recorded using a tunable optical parametric oscillator source to probe a pulsed supersonic slit jet expansion. The trimers $(CO_2)_2$ -CO and $(CO_2)_2$ -N₂ have structures in which the CO or N₂ is aligned along the symmetry axis of a staggered side-by-side CO₂ dimer unit. The observation of two fundamental bands for $(CO_2)_2$ -CO and $(CO_2)_2$ -N₂ shows that this CO₂ dimer unit is non-planar, unlike $(CO_2)_2$ itself. For the trimers CO_2 - $(CO)_2$ and CO_2 - $(N_2)_2$, the CO or N₂ monomers occupy equivalent positions in the 'equatorial plane' of the CO₂, pointing toward its C atom. To form the tetramers CO_2 - $(CO)_3$ and CO_2 - $(N_2)_3$, a third CO or N₂ monomer is then added off to the 'side' of the first two. In the mixed tetramers CO_2 - $(CO)_2$ -N₂ and CO_2 -CO- $(N_2)_2$, this 'side' position is taken by N₂ and not CO. In addition to the fundamental bands, combination bands are also observed for $(CO_2)_2$ -CO, CO_2 - $(CO)_2$, and CO_2 - $(N_2)_2$, yielding some information about their low-frequency intermolecular vibrations.