OLIVIER BERNÉ, ILANE SCHROETTER, CHRISTINE JOBLIN, AMELIE CANIN, IRAP, Université de Toulouse 3 - CNRS, CNES, Toulouse, France; MARIE ALINE MARTIN DRUMEL, UGO JACOVELLA, BÉRÉNGER GANS, EMMANUEL DARDOIS, L. H. COUDERT, Institut des Sciences Moléculaires d’Orsay, Université Paris Saclay, CNRS, Orsay, France; JAVIER GOICOECHEA, JOSE CERNICHARO, Instituto de Física Fundamental, CSIC, Madrid, Spain; EDWIN BERGIN, FELIPE ALARCON, Department of Astronomy, University of Michigan, Ann Arbor, MI, USA; JAN CAMI, ELS PEETERS, Department of Physics and Astronomy, University of Western Ontario, London, Ontario, Canada; EVELYNE ROUEFF, MARYVONNE GERIN, LERMA, Observatoire de Paris, Paris, France; J. H. BLACK, Onsala Space Observatory, Chalmers University of Technology, Onsala, Sweden; OSKAR ASVANY, SVEN THORWIRTH, STEPHAN SCHLEMMER, I. Physikalisches Institut, Universität zu Köln, Köln, Germany; EMILIE HABART, BORIS TRAHIN, MARION ZANNESE, Institut d’Astrophysique Spatiale, Université Paris Saclay, CNRS, Orsay, France; XANDER TIELENS, Leiden Observatory, University of Leiden, Leiden, Netherlands.

The methyl cation (CH$_3^+$), one of the simplest cations, is postulated to play a pivotal role in the chemistry of interstellar and circumstellar environments, but remains so far elusive outside the Solar System. We report the detection of a series of infrared lines in a protoplanetary disk in Orion using the JWST, which we attribute to CH$_3^+$. The presence of CH$_3^+$ results from the hot UV-driven chemistry, initiated at the surface of the disk by the nearby massive stars of the Trapezium cluster. The detection of this species, which is at the root of carbon chemistry in space, opens the possibility to study yet unexplored pathways of hot gas-phase organic chemistry at play in planet forming disks and beyond.

*The authors would like to recognize the PDRS4ALL extended core team, pdrs4all.org*