ABSOLUTE LINE INTENSITIES AND VIBRATION-ROTATIONAL SPECTRA OF THE ν_3 FUNDAMENTAL TRANSITIONS OF HO $_2$ NEAR 9 $\mu{\rm M}$

<u>CHE-WEI CHANG</u>, I-YUN CHEN, PEI-LING LUO, *Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan*.

In this work, accurate measurements on the line intensity of the HO $_2$ ν_3 transitions near 9 μ m have been demonstrated. In the experiment, HO $_2$ is generated by flash photolysis of the flowing gas mixture of Cl $_2$ /CH $_3$ OH/O $_2$. Upon photolysis, Cl atom is produced and reacts with CH $_3$ OH to form HCl and CH $_2$ OH. CH $_2$ OH further reacts with O $_2$ to generate HO $_2$ and HCHO. By employing synchronized two-color time-resolved dual-comb spectroscopy near 3 and 9 μ m, high-resolution spectra of both HCl and HO $_2$ radical can be obtained simultaneously to further derive the absolute line intensity of HO $_2$ transitions. Moreover, the high-resolution spectral measurements of HO $_2$ from 1100 to 1150 cm $^{-1}$ with a spectral resolution of ~ 0.0005 cm $^{-1}$ are carried out by using spectrally interleaved, comb-mode-resolved dual-comb spectroscopy.